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Abstract 

Elements of constitutive model formulation for simple materials within a thermodynamic, finite deformation framework are 
reviewed. Recent developments in addressing the second law and entropy existence are discussed. Caratheodory-based approaches 
are emphasized for their simplicity and ease of interpretation. An original treatment of finite thermoviscoelasticity is developed in 
this context. A broadened Caratheodory-based entropy is proposed, and compared to recent work of Casey (Casey J., On elastic- 
thermo-plastic materials at finite deformations. Int J Plast, 14, 173-91.). Frame indifference, objective rates, and spins are briefly 
addressed, introducing apphcation of the broadened framework to (cited work in) finite thermoviscoplasticity. Fundamental refer- 
ences are provided. © 2000 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

The student is usually introduced to the concepts of 
thermodynamics.. .in a way which does violence to 
credibility. (Serrin [2], quoting Cardwell.) 

Here internal variable representations are considered 
equivalently viable. The internal variables a may be 
written as dependent on the histories of the Lagrange 
strain E and temperature 9, and the present temperature 
gradient g{t), i.e., dependent on the controllable, or at 
least observable, variables (cf. [5-8]): 

Kt). 

1.1. Simple materials 

This paper is primarily concerned with the thermo- 
mechanics of continuum simple materials: 

A material is said to be simple if its response at 
particle X at time t is determined by the history of 
the local deformation at X and the history of the 
temperature at X [up to] time /... and generally the 
current value of the temperature gradient g(f) ([3]; 
cf[4]). 

A.m-s),e{t-s),g{t)) 
j=0 

(1) 

where the functional expression A (•) indicates depen- 
s=0 

dency on the temporal argument {t — s) over the indi- 
cated range of the parameter s. Internal variables 
cannot generally be observed during a process, but are 
made to evolve by changing the controllable variables. 
Associations of the internal variables with evolving 
average microstructural features are, however, often 
possible. Internal variable treatments usually employ 
rate functions to characterize evolutions of the depen- 
dent variables. 

The modeling associated with "simple materials with 
memory" traditionally involves hereditary functionals, 
i.e. integrals over the time history of the deformation. 

* Tel.: -I-1-937-255-9097; fax: -1-1-937-656-4706. 
E-mail address: richard.hall@afrl.af.mil (R.B. Hall). 

1.2. Notation 

X = XiEi (repeated indices are summed) denotes a 
given material point, with location assigned relative to 
the material (reference) coordinate system with ortho- 
normal base vectors Ej (7=1,2, 3). The position of such 
a point at time r during its motion isy = y(X, r) = >',e„ 

0266-3538/00/S - see front matter © 2000 Elsevier Science Ltd. All righU reserved. 
PII: 30266-3538(00)00051-8 
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relative to the current (spatial) system with ortho- 
normal base vectors e,- {i= 1,2, 3). The components of 
the deformation gradient F are Fu = dyi/dXj. Subscript 
(a)s indicates (anti)syinmetry. Superscript T denotes 
the transpose. AikBtk — Aj^Bik = A^ • B = tr(A^B). For 
(T, T) second-rank tensors referred to the reference and 
current configurations, respectively, DIVT = VQT has 
components dTjj/dXj, and divT = V^T has components 
dTy/dyi. The terminology and notation are from stan- 
dard texts such as Malvem [9], 

are required to recover the balance and interconvertibility 
of heat and work for cyclic processes (cyclic integrals of 
de, du vanish). The energy rates balance the mismatch 
of heating and working rates for noncyclic processes. 

Eqs. (2)-{4) are referred to the initial configuration by 
employing conservation of mass and the relation 
between oriented area elements in the reference vs. cur- 
rent configurations [9]: 

Po/p = dV/dVo=J (5) 

2. Deformations, energy balance 

The first law of thermodynamics (energy balance) for 
a continuum is expressed, relative to the current config- 
uration (e.g. [9]): 

= Pin + gin 

[ 7'^vd5'-t-|  pb'^vdV + prdV+l -^FqdS 
Jv is 

(2) 

L 

n'^dS = fN^F-^dSo (6) 

Po.dKo.d^o, A'^ are, respectively, the mass density, 
volume element, surface element, and external normal 
to the surface in the reference configuration, and / is the 
Jacobian determinant, /=detF. Analogues to (4) are 
then obtained, e.g. 

Po« = 
T"-F 
if-C     -DIV^o+Po'- 
f E 

(7) 

E is the total of the internal and kinetic energies of the 
body; the overdot^and ^ both denote the material deri- 
vative (^ with X fixed). Pm, Qm are the inputs of 
mechanical and thermal energy, corresponding to the 
bracketed terms beneath. p,£,u,l,b,v,r,q,n are, 
respectively, the mass density, specific total energy, spe- 
cific internal energy, traction, specific body force, velocity, 
specific rate of heat supply, surface heat flux, and outer 
unit normal, and V and S are body volume and material 
surface. Applications of the divergence theorem, mate- 
rial derivative and the equations of motion [9] result in 
the local forms (assuming sufficient smoothnesses for the 
derivatives to exist): 

pe = div(T V —q) + pb^v + pr 

pu = T-Tu — di\q + pr 

(3) 

(4) 

L is the velocity gradient, with components 
Lij = dvi/dyj. The components Ty of the Cauchy stress T 
refer' to the force acting on a plane with normal e„ in 
the direction ~ej. Eq. (3) and the equations of motion 
produce (4). Total and internal energy functions ofstate^ 

' Malvem [9]. The convention followed by e.g. Truesdell and Noll 
[12] is the transpose, 

^ The existences of total and internal energy functions are discussed 
by e.g. [2,9,10,11,13]. Suitably broad concepts of'state' (global, local) 
are employed to identify history-dependent quantities as state func- 
tions. 

where 

qo^fF-'q 

X° = £aF~'T    f =ffiF~'TfF~'')^ 
p ' p ^     ^ 

C^F'^F,  E = i(C-I) 

and the following relationships are employed [9]: 

L = FF"' 

D = L, =iF-^CF '=F-^EF '. 

A-(BC) = C ■ (AB) = (CA) -B 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

T", T, C, E, D are tensors respectively referred to as the 
first and second Piola-KirchhofiF stress, the right Cauchy- 
Green deformation, the Lagrange strain and the rate of 
deformation. I is the unit tensor. L^ is the symmetric part 
ofL. 

The energy balance appears in Section 3.3 as 

A)« = TE + eo;   Qo =-DlVgo + Por (14) 

<y 
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3. Entropy and the second law 

3.1. Dissipation inequality 

Coleman and Noll [14] originated a now standard 
procedure (e.g. [12,15-17]) for deducing constitutive 
equations through application of a statement of the 
second law of thermodynamics. The following inequality 
(called the global C-D-T-T, or Clausius-Duhem- 
Truesdell-Toupin, inequality by Man [18,19]) is postu- 
lated for irreversible or reversible processes, assuming 
the existences of (specific) entropy r) and absolute tem- 
perature 9, and extensivity of entropy: 

Ti"'M> 
-n-q 

dS + f- dV (15) 

Assuming the necessary smoothness properties, the 
divergence theorem is applied, with the resulting local 
form of the C-D-T-T inequality: 

r)- --div^-H- 
p    e   e >o (16) 

y is termed the specific rate of production of entropy,^ 
and identifies an irreversible process when nonzero. 
(Truesdell and Toupin [22], Sections 256-258, interpret 
y as irrecoverable work and/or heat flow through a 
temperature gradient.) Substitution for Q = —div^ -|- pr 
from the first law (4) produces 

y = '7 H T L q g >o, g^ve 

Defining the Helmholtz free energy 

\j/ = u — Ori 

(17) 

(18) 

results in the dissipation inequality, 

ey = -if-ne + p-^T-L-(per^q'^g^o (i9) 

Postulating the independent variables for V^ (including 
possible history-dependence, see Section 5.3), employing 
the chain rule expression for TJ/ assuming sufficient 
smoothness, then requiring (19) to be valid for arbitrary 
rates results in expressions for T and rj in terms of deri- 
vatives of the free energy. 

It is doubtful whether a sufficiently smooth entropy 
density function [to accommodate the described C- 
D-T—T-based treatment] could be generally valid for 

all classes of materials studied in thermomechanics 
[19]. 

3.2. Modern treatments 

For even more complex [than Navier-Stokes fluids] 
materials, the possibility of deriving internal energy 
and entropy from the laws of thermodynamics is 
arguably an open question [2]. 

It is emphasized that works described under this 
heading consider dynamic, spatially heterogeneous pro- 
cesses for heterogeneous material systems. The present 
section is intended as a guide to selected sources for the 
interested reader. General references and bibliographies 
for this subject are found in Man [19], Serrin [2,23], Sil- 
havy [13], Coleman and Owen [11], Truesdell [16], Owen 
[24] and Hutter [25]. The latter reference and Silhavy 
([13], Chapter 12) touch on differences between two 
main schools of development, so-called "irreversible 
thermodynamics" and "rational thermodynamics." 
(The "rational" school is the main focus of the present 
review. The machinery of the "irreversible" school was 
originally predicated on nearby equilibrium states, e.g. 
[26-27]. Recent extensions are discussed in [108-110].) 

Modern treatments of the mathematical foundations 
for the existence and properties of entropy, and precise 
statements of the second law, exploit concepts of, e.g. 
real and functional analysis, set theory, topology and 
measure theory. Three issues are of primary interest here: 

1. Precise statements of the global second law for 
thermodynamic systems (physical, volumetric entities 
such as bodies, sub-bodies, gases), and consequent 
implications for the existence of entropy for the 
system. 

2. Local statements of the second law, implying the 
existence of entropy at a continuum point; further, 
whether the entropy functions possess the differ- 
entiabilities required to derive results for the 
response functionals as described'* in Section 3.1. 

3. The relationship between the aforementioned 
global and local statements and properties. 

"The basic idea that, even for systems with memory, a 
thermodynamical inequality of the Clausius type should 
imply the existence of an entropy function is found in an 
important paper of W. A. Day [28]" [11]. This paper 
and Day [29] also show foundational eff'orts toward the 

The symbol y is used in Valanis [20] and Hall [21]. 

" See Sections 3.3, 5.1, 5.3 for illustrations. Coleman and Owen [11] 
employ u, F, and p s g/[fiBf as state variables, and extract the expec- 
ted restrictions on constitutive functions directly from their second 
law, as opposed to Eq. (19). As noted in the sequel, the existence of u 
is deduced in [11] from a cyclic form of the first law. 

I 
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modern heating measures later devised by the authors of 
global treatments, and composition arguments adopted 
by both global and local treatments. Processes must 
start and finish in equilibrium states; a second law is 
expressed for corresponding closed paths. The existence 
of absolute temperature is assumed. (Discussions are 
provided in [6,30].) Also emphasized by Owen [24] is the 
work of Noll [31], for introducing concepts from math- 
ematical systems theory. 

Coleman and Owen [11,32,33] develop a general the- 
ory of actions on associated systems,^ addressing local 
thermodynamics applications. For "simple material ele- 
ments," processes P are definedjby piecewise continuous 
functions of time (L(T), h{x), 3(T)), with "fiix) = |(T)/ 

[p{r)e{a^)f, hit) s r(T) - [pir)]"^divqia^). The stress, 
absolute temperature, and heat flux are given, con- 
tinuous functions of the state a^; these state functions are 
deduced by the treatment to obey restrictions (which 
provide the stress, temperature and dissipation relations) 
required by the second law. The stress is also assumed 
time-differentiable. The actions ^ andi>- are defined as 

^(P, a) = f p-'T(o-,) • L(T)dT + f /!(r)dr (20) 
Jo Jo 

^(^' '^^ = f l^'^^ + f [9i<r.)Vkr)dr (21) 
J 0 PI.O'T; J 0 

The statements of the (first, second) laws are that the 
actions (e^,^) have the (conservation, Clausius) proper- 
ties at one point in the state space; this framework also 
requires the assumption Q{ approximate accessibility, i.e. 
every state can be reached* from every other state. An 
action has the (conservation, Clausius) property at a 
point of the state space if it is approximately (zero, non- 
positive) for each nearly cyclic process initiated from the 
point. A nearly cyclic process maps a point of the state 
space to a point within an arbitrarily small neighborhood 
of the original. The framework of approximate cycles 
permits treatment of materials with memory properties, 
for which exact cycles may be scarce. The (conservation, 
Clausius) properties for (f^,^) can be motivated if one 
assumes the validities of Eqs (4) and (16) with (w, 77) regar- 
ded as path-independent functions of state; the treatments 
now described seek to prove such functions exist. 

Underlying the described framework is the assump- 
tion of an abundance of nearly cyclic processes (e.g. it is 
deduced that given a state where ^ has the Clausius 
property, any state accessible from it also conveys this 
property). Coleman and Owen [34] thus modify the 
accessibility requirement; the existence of only one base 

state (e.g. an annealed state in a metal) is required, from 
which all others may be reached. The second law is then 
restated without recourse to cycles: The action :> must 
be upper bounded, from the base state to all other states 
(including the base state), via all processes connecting 
the states. The previously described Clausius property is 
implied by the bound. 

Both frameworks are applied to a material point 
associated with a system, an ordered pair (E, n) of col- 
lections E of states (a) and n of processes (P); each 
process P determines a continuous mapping of states of 
E to states of E. For any processes such that the range 
of a process is the domain of another process, PI must 
contain a composite process which maps the domain of 
the first process to the range of the second process. 
Actions have the properties: (1) that the value of an 
action of a composite process is the sum of the values of 
the actions on the component processes; (2) for each P 
in n, the action is continuous on the domain of P. The 
described properties, and the assertion that the system 
obeys the second law, lead to the existences of: (a) 
internal energy functions having all states in their 
domains, and (b) entropy functions having in their 
domains a set of states which is dense in the space of 
states, i.e., all neighborhoods contain such states^. The 
first law is automatically satisfied by simple material 
elements ([11], p. 44). 

The simple material elements addressed by the theory 
include thermoelastic elements, viscous fluid elements, 
elements with fading memory, and elements with inter- 
nal variables (where the evolution rates of the internal 
state variables are given by functions of state variables 
only, i.e. no rates). Postulated state dependencies and 
topologies entering the action ^ for these specific mate- 
rials permit construction of path-independent i>-like 
integrals parametrized by instantaneously controllable 
variables, inferring the desired instantaneous differ- 
entiability properties for the entropy. Virtually all pre- 
viously existing results based on the local C-D-T-T 
inequality, with assumed, diflferentiable entropy, are 
recovered. Elastic-perfectly plastic materials in one 
space coordinate are treated by similar means in Cole- 
man and Owen [32,35]. 

Applying strategies related to [34], Lucchesi and Sil- 
havy [36] investigate rate-independent, finite deformation 
thermoelastoplastic models. Materials considered are 
initially isotropic and obey the combined hardening rule 
of Reed and Atlxiri [37], which includes as special cases the 
hardening rules of Melan, Prager, and Armstrong and 
Frederick. Conditions for satisfaction of both the second 

' In Section 3.2, the word 'system' without a modifier (e.g. 'thermo- 
dynamic') is reserved for the state space-process space pair introduced 
by Coleman and Owen [11], described in the sequel. 

* One can get arbitrarily close to any state via the set of processes fl. 

' u exists at every state of a simple material element ([11], p. 43); in 
the cases of elements with internal variables, or elements with fading 
memory, entropy may not ([11], p. 11). The base state CTQ is in the 
domain of the entropy function, and all processes in n from cro map to 
states where entropy exists ([11], pp. 12, 46; [34], pp. 175-177, 181); 
such states are arbitrarily close to any given state ([34], pp. 173-174). 

4 
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law and a nonisothermal generalization of Il'yushin's 
condition are given, and features of the set of (i.e., non- 
unique) entropy functions satisfying the local second law 
are obtained. 

Selected contributions toward developing global thermo- 
dynamic frameworks having the aforementioned prop- 
erties are Day [28,29] as previously described, Serrin 
[10,38], Silhavy [39,40] and Coleman, Owen and Serrin 
[41]. For further references see the beginning of this 
section. 

Unaddressed by the described work of Coleman and 
Owen was the question of whether a classical global 
statement or statements of the second law, which apply to 
bodies, actually imply the local results. The first difficulty 
posed by this question was how to, if possible, unam- 
biguously and precisely state mathematically the various 
versions of'the' second law. One could then also deduce 
which statements implied others, which were most or 
least restrictive or general, and potentially even deduce an 
improved statement or statements. Precise statements of 
the global second law are now realized, through employ- 
ment of the 'accumulation function' of Serrin [38] and the 
equivalent "heating measure" treatment of Silhavy [39, 
40], deduced independently. Silhavy [13] (p. 126) notes 
that assuming the heating measures of bodies in a space 
('collection') of bodies are additive, with one of the bodies 
in the space being a reversible fluid, produces equivalence 
between four statements of the second law (Carnot, Kel- 
vin and two of Clausius), while the absolute temperature 
must be an increasing function of the empirical tempera- 
ture.* Coleman, Owen and Serrin [41] express their fra- 
mework in terms of 'approximate cycles' in a way similar 
to the development of Coleman and Owen [11]. 

The accumulation function Q{P, L) represents the net 
heat transferred to the thermodynamic system during 
the process P at hotness levels not exceeding L. With 
W{P) identified as the total (or net) work done on the 
environment by the process P, Serrin [2] states the sec- 
ond law as follows:' 

If W{P) > Q for a cyclic process P of a thermodynamical 
system S, then there is some hotness level LQ for which 
Q(P,Lo)<0 (22) 

This corresponds to an interpretation of Carnot's 
statement of the second law [13]: "To produce a positive 
amount of work in a cyclic process, the body must not 
only absorb heat (this follows from the first law); it must 
also emit some (perhaps very small) amount of it." The 

* Empirical temperature is a scale which increases with hotness; see 
also Silhavy [13], p. 109. 

' A more general statement [41] modifies Eq. (23) for approximate 
cycles; roughly, a system obeys the second law iff for each £ > 0, each 
state has a neighborhood where A < s whenever a process maps the 
state to another within the neighborhood. 

primitive variables are here considered to be work, heat 
and hotness. Hotness is a totally ordered set with asso- 
ciated strictly increasing maps, onto the real numbers, 
called temperature scales. The accumulation function 
"provides the crucial link between heat and temperature 
in the theory, and codifies the observational evidence 
that heat supplied at one temperature is very different 
than heat supplied at another." [2]. 

The accumulation inequality (implied by the second 
law) is expressed as, "for every cyclic process P of every 
thermodynamic system" [2], 

^<^>=r^-j: ^Q{P, L) 
^0 

Q{P, L) = 0 when L < h, 

Q{P, L) = Q{P) when L^U. 

(23a) 

(23b) 

(23c) 

Q{P) is the net heat supplied to the thermodynamic 
system during the process. Heat exchange with the 
environment occurs between lower and upper hotness 
bounds L\ and Lu- Any temperature scale 0 which con- 
forms to (23) is at most a positive constant multiple of 
any other; (23) identifies absolute temperature. If there 
exists a function S such that AS>^(P) for each (gen- 
erally non-cyclic) process P and associated states, then S 
is an entropy function corresponding to the specified 
state structure. The treatment of [41] employs the accu- 
mulation integral A of Eq. (23) as an action, in analogy 
to.i>- of Eq. (21). A systems framework and accessibiUty 
assumptions analogous to those of Coleman and Owen 
[11] produce similar entropy existence conclusions when 
applied to bodies and subbodies. 

A partially unresolved issue is that the machinery of 
the previously described global thermodynamics does 
not directly imply local results. "Unlike material bodies, 
material elements are not 'thermal [thermodynamic] 
systems' — an accumulation function in general cannot be 
defined for a process that a material element undergoes" 
[19]. A substantial step toward unifying global and local 
treatments is made by Owen [42]. He notes that "the 
states and processes of a subbody are accessible only via 
states and processes of the entire body"; any change of 
state of a subbody causes a change of state of the larger 
body. He therefore adopts the structure of a "sheaf of 
algebraic semi-systems. The sheaf incorporates rules for 
both translations of properties between parts of the 
body (or the body) and their subparts, as well as direct 
translations between different sublevels; i.e. {A -o- 
5 -«■ C) => (^ -o- Q. Local states and processes are 
unique projections from all parts which contain the 
point. Semi-systems (E, n) have the property of acces- 
sibihty of all states a eT., via processes Pen, from at 

b 
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least one base state, a property thus postulated at global 
and subbody levels of the sheaf; it projects to the points. 
Composition of processes and additivity of actions are 
again incorporated in the semi-systems. The global sec- 
ond law is taken to be the property of boundedness of 
an action; a bounded local action is deduced from the 
described framework. When the global action is postu- 
lated to be the accumulation integral A of Eq. (23), the 
action ^ of Eq. (21) is deduced locally.'" The existence 
of entropy following from the global second law is thus 
translated to local existence. An interesting problem for 
further study is the extent to which the global-local 
analysis in [42], set in the framework of algebraic semi- 
systems, covers the types of materials treated only 
locally and in the context of systems with approximate 
accessibility in Coleman and Owen [11]. The global sys- 
tems considered by Owen [42] possess extensive entropy 
functions in a setting that encompasses heterogenous 
thermodynamical processes. 

Finally, an alternate approach to the subject may be 
noted. Man [18] extends, to inhomogeneous processes, 
treatments by Truesdell (e.g. [44-46]) based on work 
inequalities. The inequalities are applied to an entire 
body or any subvolumes. The treatment assumes the 
existence of entropy for the body or subvolumes. Man 
finds that the global C-D-T-T inequality implies his 
inequality, so his inequality is at most as restrictive as 
the C-D-T-T. Other conclusions are that it implies 
Serrin's [38] interpretations of the classical statements of 
the second law, and for 'smooth processes' assuming the 
validity of the Fourier inequality, it implies the local C- 
D-T-T inequality. The level of smoothness required is 
the same as that required to go directly from the global 
C-D-T-T form to the local form. 

3.2.1. Classical material systems 
Serrin ([2], Part II) specializes the global methods 

previously described to "classical material systems." 
The associated modeling employs: processes represented 
by paths in a state space; an absolute temperature 6 
corresponding to each state {d may itself be a state 
variable); connectedness of the state space; differential 
forms, with continuous coefficient functions, for heating 
q and working w as follows {a denotes a state): 

q = ^9,((T)d(T,-;     W =: ^W;((T)dcr; (24) 
/=i 

These forms are integrated over a path in state space 
to give the total quantities for the process. Existences of 
continuously differentiable internal energy U and 
entropy S functions follow from a cyclic statement of 
the first law, the accumulation inequality (23), and con- 
sideration of closed paths between two states. 

The entropy production is zero at the quasistatic limit, 
the condition when (24) is assumed valid; i.e., the 
expressions (23) and ^S'^A{P) become equalities," and 
dS — dQ/6. Correspondingly, from (24) it is observed 
that reversing an increment along a given state path will 
result in heating and working increments which are the 
negatives of those in the forward direction. These are the 
conditions for a reversible process [2]. The model is 
therefore compatible only with materials and processes 
displaying reversible behaviors in the quasistatic limit. 
Plastic deformation, for example, is associated with his- 
tory-dependent, irreversible'^ micro-structural rearran- 
gements; entropy production should be admitted in 
corresponding models, regardless of rates.'^ "Whether a 
quasi-static process can arise from material processes P„ 
with the limiting behavior given by the previous for- 
mulas,''' is a problem which must be faced with the same 
honesty as for reversible processes" [2]. 

3.3. Caratheodory frameworks 

The quotation which opened the previous section 
indicates issues in the theoretical foundations of thermo- 
dynamics, regarding the generality of materials and 
processes accommodated. The simpler methods described 
in this section are justified by the acceptable accuracies of 
conclusions derived from them. The quasistatic entropy 
production may be non-zero in these approaches. 

The approaches described here are considered by 
some authors (e.g. [13,30], noting Section 3.3.1 below 
regarding irreversible processes) applicable to quasi- 
thermostatics only, i.e. conditions near thermodynamic 
equilibrium. Entropy and absolute temperature again 
appear as derived, rather than primitive, quantities. 
Arguments for the quasistatic limitation, by the authors 
cited, involve the treatments of absolute temperature 
and extensivity of entropy (Section 3.3.1). Diff'erent 
opinions are recorded by e.g., Boley and Weiner [47] 
and Nemat-Nasser [5-7,106], who treat nonequilibrium, 
inhomogeneous processes. See also Silhavy [13], p. 109, 
indicating limitations exist for any treatment incorpor- 
ating the concept of temperature. 

Nonequilibrium systems may certainly be modeled, in 
association with e.g. the concept of temperature, when 
the "method of local state" applies (e.g. [17,48]): the 
relaxation times inherent to local thermodynamic equi- 
libriiun should be much shorter (e.g. order of atoinic 
vibration periods) than the characteristic times of the 
macroscale deformations and processes considered. The 

Due to an unpublished result of Serrin [43]. 

" Note e.g. the next to last equation of [2], p.59. 
'^ Reversing the path of controlled variables does not cause retra- 

cing of the path of dependent variables, which may include the 
micros tructure. 

'^ Cf. the rate-independent treatment of Lucchesi and Silhavy [36]. 
'■' The specific formulas referred to give the heating and working 

quasistatic limits as path integrals of Eq. (24). 

u? 
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local behavior can thus be considered as a succession of 
quasi-equilibrium states. The tenn 'quasi-equilibrium' 
refers to the presence of temporal derivatives at the 
macroscale required for e.g. rate-dependent deforma- 
tion. [The present discussion should not be confused 
with the alternative approach of, e.g. [26,27]; see e.g. 
Eq. (21) of the former.] 

3.3.1. Theorem of Caratheodory. Application to total 
deformation and internal variables 

Thermodynamic states for the materials of interest are 
assumed specified by (E, &; a)}^ E is the Lagrange strain 
tensor; a represents internal variables, which may have 
arbitrary tensorial order but usually have order two or 
zero (scalar). ■& denotes empirical temperature, a func- 
tion which increases with hotness. An energy variable, 
e.g. M, might be used instead of !> [49-51]. A semicolon 
separates the controllable variables from the uncontrol- 
lable internal variables a [5-7]. The internal energy 
density and stress are assumed to be single-valued func- 
tions of (E,!?, a). 

Casey [1] offers an equivalent approach to that of this 
section without directly incorporating Caratheodory's 
theorem. Although this equivalence is not noted there, 
the process of deduction employed there offers an alter- 
native basis for what follows here. Coleman and Gurtin 
[52] take a reverse approach to the present, assuming 
entropy and absolute temperature as primitive concepts. 
Other features are nearly identical. 

It is.assumed that irreversibilities of processes without 
heat sources or heat flux through the boundary (Qo = 0) 
derive only from thermodynamic forces acting through 
changes da of the internal variables. Thus when a is 
constant, all associated irreversibilities vanish. It is 
understood that the internal variables a can be fixed 
mathematically, whether or not this can be realized 
during any given physical process, without consequence 
to the treatment. For a fixed, a suitably small neigh- 
borhood on the associated hyperplane is assumed to 
present a continuum of accessible elastic transitions [6]. 

Caratheodory established a theorem for the integr- 
ability of linear differential forms, which he used to 
formulate a basis for the existence of a universal (ther- 
modynamic, absolute) temperature and entropy 
[20,47,51,53]. Bernstein [54] and Truesdell [16,55] note 
that the original proof of the theorem is open to certain 
criticisms, which they also note are surmountable. 
Numerous proofs of the theorem have been offered 
(e.g. [54], with footnote of Truesdell [55], p. 117; 
[20,30,50,51,56,57]). 

Caratheodory's theorem can be applied to the internal 
variable frameworks described here [5-7,20,47,57,106]. 
As noted by the cited authors, the variables associated 
with irreversibilities must be held fixed when integrating 

" Omission of the temperature gradient is discussed in Section 5.3. 

the first law. This conclusion agrees with the assessment 
by other authors (e.g. [13,51]) that Caratheodory's 
approach may be applied only to reversible processes. It 
is assumed [49,51] that during such a reversible process 
the changes of state can be completely specified by a set 
of deformation coordinates (E here, for a fixed) and just 
one nondeformation coordinate (e.g. ■& or u); further- 
more, that each fixed set of deformation coordinates is 
associated with a continuous range of possible states 
(i.e. the nondeformation coordinate), and continuous 
variation of the deformation coordinates results in a 
continuous variation of the range of possible states. All 
functions entering the differential form must be once 
continuously differentiable [55,56]. It is lastly, and 
importantly, assumed that for processes under con- 
sideration ('locally reversible' [47]), the internal energy 
is always given by the same equation of state, for irre- 
versible or reversible processes. Application of Car- 
atheodory's theorem then produces relations between 
functions of state which are assumed valid for any 
transition, reversible or irreversible. 

Caratheodory's statement of the second law can be 
expressed in relation to the present framework as fol- 
lows (cf [7,20,47,56,57]): 

At an arbitrary state {E, 9; a} and point X, there exist 
arbitrarily close states inaccessible by locally adiabatic 
processes, for fixed a = a (25) 

Statement (25) addresses local (point) elastic transi- 
tions. It may be understood in terms of local Taylor 
series representations of actual, generally inelastic, 
transitions. Responses to arbitrary, incremental changes 
of the controllable variables may be decomposed into 
the corresponding elastic responses (a fixed) and the 
additional responses due to the changes of internal 
variables. Similarly, by fixing internal variables globally, 
considering adiabatic transitions and states of the body, 
statement (25) becomes Caratheodory's second law as 
applied to elastic transitions of bodies. 

Statement (25), even when the restriction to elastic 
transitions is removed, is an incomplete statement of the 
second law in comparison with the classical statements 
of Clausius, Kelvin, Carnot and Plank; it provides no 
information regarding which states are inaccessible. 
Caratheodory's inaccessibility statement may be refer- 
red to as the 'first part' of the second law; identification 
of the inaccessible states involves an inequality and is 
referred to as the 'second part' of the second law (e.g. 
[1,7]). The latter requirement is addressed in a forth- 
coming subsection. Reconciliation of statements similar 
to (25) with the classical statements of the second law is 
given by Buchdahl [56]; see also [7,30,51,58]. 

Caratheodory's theorem for integrability of linear 
differential ('PfaiRan') forms may be stated as follows 
(cf [47], [55] p. 117 footnote, [20,51,53]): 

1 
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If in every neighborhood including an arbitrary point 
fo, there exist points f which are inaccessible along 
curves satisfying the differential equation 

2];/'.(fi,...,f«)df„=o, (26) 

where the P„(fi,..., f„) are single-valued, continuously 
differentiate functions of the arguments, the linear dif- 
ferential form possesses an integrating factor A(f i f„) 
such that 

-^^P„(i)df«=d^(f) 
A(f)-=i 

is an exact differential. 

(27) 

The integrating factor A(^) is nonunique, since if /x(^) 
is any differentiable function of (p, then (d/x/d^)d^ = d/x 
is also an exact differential. Thus 1/A = fx'/X is also an 
integrating factor for (26), with d^ = ix'((p)d(p the corre- 
sponding exact differential [53]. 

Recalling the previously stipulated requirements, 
Caratheodory's theorem may be applied to the first law 
(14) for a locally adiabatic increment with a = z(fixed) 
[5-7,20,57,106], based on the inaccessibility statement 
(25) of the second law: 

1 
A(E,!?; a) 

[podw - T • dE]^^j = d¥;(E, &; a) (28) 

By considering the special cases of two or more 
mutually equilibrated systems in thermal contact, it is 
found (e.g. [6,53,56,106]) that X for any system must 
possess a common factor dependent only on !?, this fac- 
tor being therefore independent of any individual sys- 
tem. The symbol 6 is used for the required form of this 
common factor, which is the absolute temperature; it 
must be a single-valued, monotonic function of a single 
sign (positive by convention), and is unique to within a 
multiplicative constant [51,53,56,58]. If for simplicity we 
choose unity for the remaining components of A for each 
system, the exact differential function of state d(p(¥.,!?; a) 
directly provides the differential entropy per unit refer- 
ence volume ([53]; cf. [8,56,106]). Recognizing that for 
any value of a there corresponds a state function hyper- 
surface (p, and replacing the empirical temperature !? by 
the absolute temperature 6, the function r)(E, 5;a) is 
employed to represent the entropy per unit reference 
mass. The possible entropy functions lie between 
bounds'* difTering only by functions of a ([5,6]; cf 
[36,47]). Consideration of homothermal, but otherwise 
heterogeneous, systems produces the conclusion for such 
systems that entropy is extensive''^ ([106]; cf. [56]). 

Identification of the heat source term r with radiation 
may require consideration of multiple 'temperatures' 

[59]. The same qualification applies to the treatments of 
Section 3.2. 

Edelen [57] proposes frameworks of the general type 
presented here, while assuming a semi-additivity prop- 
erty for energies of conjoined systems. The absolute 
temperature may then depend on a as well as!?, coupled 
with more general behaviors for u, i/f and their deriva- 
tives than result here. 

The internal variable frameworks of the present sec- 
tion will herein be referred to as VNE type, in accor- 
dance with the contribution dates of the authors 
(Valanis, Nemat-Nasser, Edelen) cited. 

3.3.1.1. Helmholtz free energy, entropy rate and second 
part of the second law. The existence of the entropy 
function of state permits the derivation of associated 
potential functions. From (28) using the notation 
described above [20], 

[pod«(5) - T(a) • dE] = po6'dr;(a) (29) 

where u, rj and T are functions of (E, 0; a), and the 
notation (a) is used as a reminder that a is constant in 
Eq. (29). 

Writing the differential expansion of the specific 
Helmholtz free energy i/'(E, 8; a), Eq. (18), about a state 
(E, 6; a) produces, using Eq. (29): 

dif = po'T • dE - rjde -\- {df/d&f ■ da, (30) 

recalling that the notation of Eq. (29) is consistent with 
the relations (when the derivatives exist) 

dw = dw(a) -I- (3M/3a)^.da 

dT] = dr;(a) -I- (drj/daf ■ da 

(31) 

(32) 

Eq. (30) is a first-order Taylor series expansion of an 
arbitrary increment di/^; Eq. (29) relates terms associated 
with constant a. From Eq. (30) it follows immediately 
that the existence of the free energy provides a local 
potential function for the stress and entropy: 

T = po(9iA/9E)^= po9iA/9E 

From Eq. (18), with (14), (30): 

•      P^f       /        m     2o     Po fdifV   . 

(33) 

(34) 

(35) 

" The method of [5,6] to obtain bounds is based on the equivalent 
of Eq.(39)2; the same method can be applied based on Eqs. (36), (38). 

" The same arguments apply to Sec. 3.3.2-3.3.3. Note that the 
second law (25), applied locally, results in a local entropy function, 
independent of extensivity considerations. 

s 
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Eq. (35) may be rewritten, using (14)2, as the next two 
equations. Inequality (38) is postulated^^ [cf. (16), 
(21)if., (23)ff.]: 

PofJ- 

PQY- 

-D,v(|)+^" A)y 

■%T: 

6»2 e Ua/   '* 

Poy^o 

(36) 

(37) 

(38) 

3.3.2. State and dissipative deformation variables 
Boley and Weiner (BW; [47]) apply Caratheodory's 

theorem within a different conceptual framework. The 
deformation rate is decomposed into a recoverable part e 
and a dissipative part d. Only the recoverable defor- 
mation e enters the argument lists of the energy func- 
tions (i.e., e is a state variable). The iirst law [cf. (14)] 
becomes 

Poll = te-fsd-fgo; 

M = M(e, 6). 

(40) 

(41) 

where the gradient operator with respect to the refer- 
ence coordinates is employed. 

Eq. (36) may be integrated (assuming the required 
smoothnesses) over the system volume or any sub- 
volumes. The result is the difference between the 
entropy rate and its sources as a result of surface and 
volumetric heat input. Vanishing a in Eq. (37) results in 
the Fourier inequality ([16], pp. 116-117), - ^JVo6l^O, 
consistent with the commonly applied Fourier law of 
heat conduction. 

If a and a are independent'^ of VQ^, setting V^O = 0 in 
(37) and (38) produces the following relation for the 
internal dissipation a, which holds independent of the 
value of Vo6» [52]: 

(39) 

The terminology is consistent with Coleman's [15] 
hereditary functional treatment (Section 5.3). Eq. (39)2 
is associated with certain stability properties [7,52]. 

Note the assumptions producing the inequality (39)2 
are stronger than the statement that jj^O in locally 
adiabatic transitions. The latter statement follows 
directly from the local C-D-T-T inequality Eq. (38) with 
(36), or the equivalent (except for required smooth- 
nesses) global form (15). The C-D-T-T inequalities, Eq. 
(15), (36), (38), are adopted here as the second part of 
the second law; they guarantee satisfaction of the 
requirement of the Caratheodory approach that states 
inaccessible along curves podu(a) — T • dE = 0 (i.e., states 
of lower entropy) should exist in an arbitrarily small 
neighborhood of every state. The assertion assumes 
invertible state relations in the sense that (E, 0; a) space 
may be equivalently replaced by (E, rj; a) space. 

t and s are appropriate conjugate forces. Eq. (41) indi- 
cates that the dissipative deformation affects u through 
its effects on 0 and on the partition of the total defor- 
mation. The heat supply, description with respect to the 
reference volume, and use of second-rank tensors are 
slight modifications of the BW treatment for con- 
sistency. 

In analogy to the derivation of (28)-(29), an equation 
of state is obtained from the inaccessibility of arbitrarily 
nearby states during processes with conditions 2o = 0 
and d = 0. Two equations result: 

PoM = t • e -f poOf) 

PoOri ■d+Qo 

(42) 

(43) 

Eq. (43) follows from (42) and (40). The free energy is 
still defined by (18), resulting in (34) and t = po(df/def. 
Definition (36) for y produces, with (38), (43) and (14)2, 

poy = - 
-qlVoO     S  A 

02 
+ ■ 

0 
^0 (44) 

3.3.3. Combined approach 
The approaches of Sections 3.3.1 and 3.3.2 establish 

the existence of entropy for many material models. 
However, certain models addressing inelastic behaviors 
(e.g. [17,21,60]) employ ir{t,6\ a), where e is the recov- 
erable component of deformation and direct measures 
of inelastic or total deformation do not appear as state 
variables.2'' A decomposition of work as employed by 
BW is thus suggested. Internal state variables (VNE) are 
required independently of such a decomposition; they 
do not contribute to net work (the conjugate forces do 
not appear on the bounding surfaces), but affect the 
entropy and thus the energies. The desired features of 
the earlier frameworks can be combined, as follows. 

'* Alternatively, an assumed accessibility condition for the defor- 
mation and internal variables, together with (25), yields nondecreasing 
entropy in locally adiabatic processes [7,56]. 

" See Section 5.3. 

2" The VNE approach can be applied given F^(F, F'); F*, F' are the 
elastic and inelastic deformation gradients. When F' refers to plastic 
deformation, such a relation is normally assumed. Lee [107] argues 
against plastic deformation (as opposed to its history) as a state 
variable. 

<\ 
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The first law is given by (40).^' Caratheodory's theo- 
rem with dy = Qo = 0 and a = a produces 

podM(a) - f(a) • de = po6dri{a)\ (45) 

M = M(e,6l;a);   i/= i/(e,0; a). (46) 

where (46]) is a constitutive assumption. Expansion of 
the free energy about the state (e, 0; a) produces, with 
(45), (31), (32), 

i/ = Po't • e -ii9 + (dif/daf ■ a. 

It follows immediately that 

t = po(dTlf/def-   Ti = -dxlf/de. 

(47) 

(48) 

Thus the free energy relates the stress to the recover- 
able strain, as in, e.g. [17,32,35,47,61,62]. From (18), 
PQ0fi = po(u - Vf - nO); with (40) and (47) it follows that 

PoOri -s-i + Qo- poidif/da)  ■ a, 

Po9y = s • d - -^ po (S)'^ >0 

(49) 

(50) 

where (50) results from (49), (36) and (38). Note from 
(49) that the dissipative terms (s ■ d -I- Qo) in the first law 
(40) may be prescribed as [poOfi + po{dxlf/dzj^ ■ a]. 

Considering thermoelastoplastic (rate-independent) 
materials, Casey [1] employs a procedure equivalent to 
VNE,-^-^ without directly employing Caratheodory's 
theorem. Relations- similar to (47)-(50) are obtained by 
constructing path-independent entropy functions for 
homothermal ( VQ^ — 0) thermoelastic processes, yielding 
entropy functions parametrized by constant values of 
the internal variables. The assumed internal energy M 

and free energy TJT state functions therein include in their 
arguments the total strain E and plastic strain W, as 
opposed to (46). The consequences are the replacement 
of the dissipative work rate s-d in (49)-(50) by 
— po{dir/dW)^■'E , and replacement of the recoverable 

work rate t-e in (47) by po[idi//dEf-t + idir/3E''f-t^], 
i.e. by (f E - T''-E^) where t is the 2nd Piola-Kirch- 
off stress and T' is a dissipative conjugate force. We 
recall from (48) that the free energy xjf relates stress to 
recoverable strain, whereas the analogous equation with 
Vf relates stress to total strain. 

The non-thermal (recall Section 3.3.1) state and dis- 
sipative variables in the present and previous sections 

^' See [21,60] for illustration. 
^^ The plastic strain appears in Casey [1] as an internal state vari- 

able. It does not affect the expression of the first law because of the 
presence there of the rate of total strain, as total strain is also a state 
variable in that treatment. 

could be assumed of arbitrary numbers,  as tensors, 
scalars, etc.; see e.g. [47]. 

4. Objectivity 

Constitutive equations must be invariant under a 
change of frame. If a change of frame of the current 
(Eulerian, spatial) configuration is given by 

rin = cio+Qit)-y(t) 

t" = t-a. 

(51) 

(52) 

where Q(r) is a rigid rotation (Q^Q = I) and a and c are 
constants, the dependent and independent vector and 
tensor variables of a constitutive equation must trans- 
form according to (e.g. [9]) 

V* = Q(Ov 

T* = Q(0TQT(0 

F* = Q(OF 

(53) 

(54) 

(55) 

where v and T are arbitrary vectors and second-order 
tensors, and F is the deformation gradient or other two- 
point tensor (indices referred to both current and refer- 
ence configurations). Higher-order tensors transform 
similarly for each index, while scalars must be invariant. 
These are the conditions for (Eulerian) objectivity. On 
the other hand, quantities referred only to the initial 
configuration are unaffected by such Eulerian frame 
changes, e.g. C* = F'^^F* = C by (55) and thus C* = C; 
such invariance is called Lagrangean objectivity by 
Ogden [63]. Thus if the unspecified quantities t, s, e, d, a 
of Sections 3.3.2 and 3.3.3 have only indices referred to 
the initial configuration (i.e. the quantities are Lagran- 
gean), the equations of those sections are invariant to 
changes of the Eulerian frame. If instead (e.g. [21]) the 
quantities are work conjugate per unit initial volume but 
are attached to e.g. the Eulerian configuration (e.g. the 
stress power per unit initial volume may be written t ■ D 
where t = /T is the Kirchhoff stress and T is the Cauchy 
stress), equations of the sections cited which involve 
rates are not yet objective. It should be noted that 
configurations intermediate to the reference and current 
configurations are possible (e.g. [61,64]). 

Requiring constitutive equations to represent the 
same phenomena in two frames leads to restrictions on 
the constitutive functionals. For example, a rotated 
Eulerian stress T* attached to a rotated body and 
deformation F* must be described by the same func- 
tional (Section 5.3) which gives the Eulerian stress T 
with deformation F in the unrotated frame. If h is the 
functional for the stress T, the result is (e.g. [66]) 

\0 



R.B. Hall I Composites Science and Technology 60 (2000) 2581-2599 2591 

(F(T)) = QT(0f  h   (Q(T)F(T)))Q(0 (56) 

for the general case of history-dependent h.^^ 
Special consideration must be given to the time rates 

of Eulerian quantities appearing in constitutive equa- 
tions. Objective rates (') are defined based on the spin w 
of an Eulerian frame as follows (e.g. [65]), noting F 
transforms as does v: 

5. Applications 

5.1. Thermoelasticity 

For a thermoelastic model, the free energy is assumed 
free of any irreversibilities or history effects, therefore 
from Section 3.3.1, 

ir = if{Y:,e), (61) 

V = V — wv 

T = t - wT -H Tw 

(57) 

(58) 

Rates defined by Eqs. (57)-(58) transform according 
to (53)-(55) when the spin w transforms according to 
(Lee et al. [67] and Dafalias [64]) 

w* = QQ   -I- QWQT (59) 

where the dual vector of the quantity A = QQ is the 
angular velocity of the frame rotating according to Q{t) 
[9]. From the perspective of the specified rotating frame, 
the objective rates of (57)-(58) reduce to material deri- 
vatives. 

For materials with oriented substructure (e.g. 
[21,60,64,65,68,69]) w is associated with the spin of the 
substructure, e.g. the lattice directions of a single crystal 
or the fiber directions of a composite material, which 
differs in general from the continuum spin W (antisym- 
metric part of L). The inelastic part of (W—w) is a 
"plastic spin" [65], which requires a constitutive relation 
for its definition. The concept can be generalized (e.g. 
[64,70]) to include multiple spins and associated objec- 
tive rates corresponding to multiple substructures, i.e. 
internal variables. 

Xiao et al. [71] demonstrate that spin tensors 
w = W(B, D, W), with B = FF'^ the left Cauchy-Green 
tensor and W and D as defined previously, provide rates 
(58) which are objective for any time-differentiable 
Eulerian symmetric tensor field T, iff 

W = W -1- P(B, D), (60) 

where P(B, D) is an antisymmetric tensor-valued iso- 
tropic function. Xiao et al. [72] found that the defor- 
mation rate D is the objective log-rate of the Eulerian 
logarithmic strain (definitions in [72]). 

and the stress and entropy are given by (33)-(34), 
directly satisfying the requirements of objectivity. An 
alternative approach employs (19). Starting from 
i/r = i/r(F, 9), for example (e.g. [12]), the chain rule for ^jf, 
Eqs. (11) and (13) yield 

Po-'T°- (62) 

recalling the first Piola-Kirchoff stress (Eq. (9)). 
Requiring (62) to hold for arbitrary (F, d) produces (34), 
Fourier' law, and 

: po(a^/aF)^. (63) 

i/f = i/f(F, 0) fails to satisfy the requirements of objectiv- 
ity. Cauchy's theorem on invariant functions [12,73] 
shows that V is a scalar invariant to Eulerian frame 
changes iff it depends on F only through its dot pro- 
ducts on the Eulerian index, i.e. through CRM = P\iFM 
or functions thereof (e.g. E), rendering i/f(E(F), 6) an 
isotropic function. Eq. (63) is therefore employed with 
V'(E(F), 0) and the chain rule. It is then verified that T° 
is objective. Equivalently, (53)-(55) may be applied 
directly to restrict functions representing the stress, 
leading to (56) without history dependence [9,12,66]. 

It should be noted that while incremental relations 
which follow by differentiation of (33) are path-inde- 
pendent as required for an elastic material, commonly 
used incremental relations are not [74,75]. Some 
approaches are discussed by e.g. Dafahas [65], Pereda et 
al. [76], Xiao et al. [72]. 

With a and d absent, Eq. (50) produces the Fourier 
inequality. As remarked by Rivlin [77], a procedure 
analogous to that applied to the stress constitutive 
equation by Rivlin [66] can be applied to the heat flux 
to guarantee objectivity. The result is (see also Section 
5.3) 

''■' If Eq. (56) is written without history dependence, h is a so-called 
isotropic function; cf. [64,65]. The word 'isotropic' is unrelated to 
symmetry of the associated material, which may be anisotropic. 

5(O = F7^(E,0,io), 

go = Wo0 ~ GRAD^. 

(64) 

(65) 

i\ 
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5.2. Thermoplasticity 

As mentioned in Section 3.3.3, the thermodynamics of 
that section is compatible with a well-established class of 
models, e.g. [17] where such models are applied to small 
strain thermoviscoplasticity and (rate-independent) ther- 
moplasticity. A similar group of rate-dependent models 
is thoroughly reviewed in [78]; Walker [79], Lindholm et 
al. [80] and Krempl [81] are additional reviews to be 
considered. Hall [21] casts the finite deformation ther- 
moviscoplasticity development of Chaboche [48] within 
the Section 3.3.3 framework, and incorporates the plastic 
spin suggested by Dafalias [68]. The interested reader will 
find there and in [60] development omitted from this 
section. Chaboche [48] and Lemaitre and Chaboche [17] 
discuss a similar framework for damage mechanics. 
Nemat-Nasser [6] describes modeling of Valanis [82] 
based on a 'material time' measure, which may simulate 
either rate-dependent or rate-independent behaviors, 
and related considerations within the VNE context; a 
more recent source is Valanis [83]. Malvern [9] is an 
excellent source for overall modeling considerations in 
thermomechanics, as well as fundamental considerations 
related to plasticity. For excellent additional discussions 
of plastic spin, Dafalias [64] can be consulted. Citations 
of the aforementioned references, as well as others of the 
present article, should also be of interest. 

restricted to homothermal, but otherwise heterogeneous, 
conditions (c.f. [5,7], [106]). 

Gurtin and Hrusa [92] consider the special case when 
local constitutive representations are defined by single- 
integral laws, i.e. functional defined by single integrations 
over time. They deduce restrictions on a class of such 
representations which ensure a corresponding single- 
integral entropy, assuming absolute temperature as a 
primitive variable. Restrictions on heat flux functionals 
are addressed when reduced to dependence on (F(/), 

A VNE treatment will eventually be constructed here for 
consistency with the entropy existence arguments of Sec- 
tion 3.3. Initially, however, a treatment based on the dis- 
sipation inequality (Section 3.1) will be developed. The 
deformation E is employed^'* here from the outset [91 ], as it 
is invariant to rigid rotations of the Eulerian frame (Sec- 
tions 4 and 5.1). The following definitions are employed: 

A = (E(?), e{t)) (66) 

A.'{s) = A{t-s),   ^e[0,oo) (67) 

A.[{s) = K{t - s),   .se(0, oo) (68) 

A'^{s) = A(t-s)-K{t\se[Q,ooy,   A^(0) = 0.      (69) 

5.3. Thermoviscoelasticity 

For finite deformation thermoviscoelasticity, selected 
fundamental references are Biot [84,85](reviewed in 
Fung [86]), Schapery [87,88], Valanis [89], Coleman 
[15,90], Day [28,29] and Christensen [91]. The treat- 
ments of the first three authors are related to the irre- 
versible thermodynamics mentioned in the introduction 
to Section 3.2. The subject is briefly introduced here, 
following instead the rational thermodynamics approach 
of Coleman [15,90], mainly as restated by Day [29]. Other 
than the work of Day [28,29] concerning entropy existence 
(Section 3.2; separate from the material described below), 
the cited references postulate entropy as a primitive vari- 
able (e.g. Section 3.1). Other approaches to entropy exis- 
tence are discussed in Section 3.2. Coleman and Owen [11] 
and Coleman et al. [41] should be especially noted in rela- 
tion to the present development; as described in Section 3.2 
and Owen [42], a corresponding unified treatment deriving 
both global and local entropy from a global statement of 
the second law is not yet available. The second law con- 
sistent with the purposes of Section 5.3.2 requires (global 
or local): at any state, neighboring states exist which are 
inaccessible by adiabatic processes with internal variables 
fixed. Thus the local entropy results of Sec. 5.3.2 are 
obtained from a global statement of the second law. The 
same second law, with the first law expressed for sub- 
volimies, also provides a global extensive entropy when 

ri(Li, A|) • r2(L2. h) ^ L, • L[ + X1X2 

r(L,/l)   =T-T = l.-l.'+X\ 

(70) 

(71) 

Eqs. (70), (71) show the inner product definition and 
natural norm | • | for elements T = (L, X) of the his- 
tory vector space corresponding to a fixed time. A'(.y) 
is the total history vector. The subscript r in Eq.~(68) 
is used to denote the restriction of the history to past 
times, j > 0; h[{s) is the past history vector. A^(.y) is 
the difference history vector. 

The constitutive postulates are expressed in the form of 
functionals depending on the entire history of deformation 
and temperatvire.^^ Accordingly, the free energy func- 
tional has the equivalent forms [90] 

ir{t) = p (A, A^(^)) = p (A, A[{s)) (72) 

The argument lists of (72) both include the information 
required to construct the entire history A'(), and are 

^'' Coleman [15,90] and Day [29] employ F. 
^^ Dependence on the present value of temperature gradient, [cf, 

Eq. (1)], is omitted from response functionals other than the heat flux, 
for reasons to be explained. 

\^ 
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therefore equivalently general. The argument (■) is used 
when the entire domain of a function is involved, or to 
emphasize the function as opposed to a value for specific s. 

The hereditary/functional approach involves an 
expansion of the response functionals about the current 
state.^* Smoothness is expressed with a fading memory 
norm, which incorporates an obliviator, or influence 
function. The obliviator characterizes the rate at which a 
material's memory of previous deformations fades with 
time. An obliviator /; is a continuous, positive, mono- 
tone decreasing function such that [29,94] 

as |S2|+ r(-) 0. Admissible past history func- 

h{s) ds < oo. (73) 

The results are independent of the choice of obliviator 
([29], p. 87; more general theories of fading memory are 
cited there). The obliviator appears in the norm ||(-)||: 
which must be finite, for elements of an associated 
Hilbert space (with similarly defined inner products): 

r = h{syr{s) ■ r{s)ds 
1/2 

(74) 

The obliviator progressively diminishes the effects of 
deformations for times increasingly distant from the 
present (increasing s). For small ||r|| and \Q.\, smooth 
functionals/possess expansions as follows; 

/(A + 2,A^(-)+r(-))=/(A,A;(-)) + 9^A,A;(.))-2 

+ 57(A,A;(.)|r(-)) 

■o(|g| + ||r(.)||) 

(75) 

-1-^ 

lim     o(|g| + ||r(.)||)/(|g| + ||r(-)||)=o   (76) 
5 + r(-)   ^0 

The notation/(A, A^()) is used to represent a func- 
tional / of the second type in Eq. (72); we will consider 
such representations almost exclusively. Sf is a first- 
order Frechet differential (e.g. [91,95,96]) a functional 
which is linear in the past history variation r(j). Higher 
order terms are multilinear in T{s). Functional/BA/and 
9/ are continuous in all of their arguments. Illustrated 
for/, continuity provides that, 

7(A + 5,Aj(.) + r(.))-7(A,A^(-)) 0 (77) 

'^ Expansion about the current state suggests the use of current 
state as reference state, which involves relative deformation tensors [9]. 
For associated development see Coleman and Noll [93] and Truesdell 
and Noll [12]. 

tions are absolutely continuous and belong to the pre- 
viously described Hilbert space, and the value at j = 0 + 
exists. Almost everywhere [111], the derivative belongs 
to the Hilbert space, and Jacobian determinants and 
absolute temperatures are restricted to be positive. 
Admissible functions on the domain of present time are 
diflferentiable and similarly restricted. For functionals 
obeying Eq. (75) and having admissible arguments, and 
with y(0=/(A(0. Aj(-)), the following chain rule 
applies [94] (cf!'[29])T 

m = 3^(A(0, A'X • ))■ A(0 + 5/(A(0, A;( . )| A;( •))   (78) 

Bounded motions which are sufficiently slow and 
continuous in the 'recent' past, for example, are asso- 
ciated with small norms in Eqs. (75)-(76) and may be 
accurately represented by the expansion about the cur- 
rent state (cf. [93], p. 245; [12], p. 109). 

5.3.1. Dissipation inequality treatment 
To affirm the conclusions of the VNE treatment, a 

development is first presented based on the dissipation 
inequafity. Following Coleman [15] and Coleman and 
Mizel [4], employing constitutive functionals, and Cole- 
man and Gurtin [52], employing internal variables with 
constitutive functions (Section 3.3), we initially add to 
the argument lists a potential dependence on the present 
value of the temperature gradient; here go(0 is equiva- 
lently employed instead of g{t). The conclusion is that 
only the heat flux q{i) may incorporate such dependence, 
hence its omission from earlier discussions. This is 
demonstrated here for the present functional treatment; 
the procedure for internal variable treatments is practi- 
cally identical.^^ The constitutive functionals are thus 
expressed as [extending the smoothness assumptions to 
include the additional argument function go{t), and using 
referential quantities in (82) and (83) for convenience]: 

v.(0 = t^(A(o,^o(r),A;(.)) 

M(0 = M(A(0,go(O.AK-)) 

7?(0 = n(A(0,io(O.AK-)) 

t(r) = f(A(r),io(0,Aj(-)) 

5o(0 = ^o(A(r),^o(O.Aj(-)) 

(79) 

(80) 

(81) 

(82) 

(83) 

■^■' The  present  discussion   considers   derivatives   of  functionals; 
application of the method to functions is straightforward. 

\% 
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The dissipation inequality (19) is considered in the 
form [from (36), (38), (14), (18)] 

0)/ = -t/r - r,^ + p^'f -E - (po0)-'5jio>O. 

Employing the chain rule (78) for \jf produces 

T 

(84) 

^(A,JO,A;()))  +Po-'t(A,io,A;(-)) 

\ de 

•E 

iA,go,A[i-)) + riiA,go,A'^i))]0 

^diriA,go,A'ri-)V 

Sgo i 
go 

5Vr(A,^o,A;(-)|A;(-)) +- 
roit)qoiA,go,Aii-))^ 

Poit)0{t) 
>0 

(85) 

As (E, 9, go) may be arbitrary (e.g. large magnitude with 
components of either sign), the inequality is guaranteed 
iff the coefficients of these terms vanish, and [recalling 
(65)] 

qo^oO   pojT. „ 
foy= —^—-jH>o (86) 

As dir/dgo must vanish, i/f (and Sx(f), and thus T, fj, u 
are independent of ^o as postulated earlier, ^o is thus 
henceforth omitted from the corresponding argument 
lists. The heat flux, of course, may still depend on go, in 
accordance with Fourier's law. The equations relating 
the stress and entropy to the derivatives of the free 
energy follow from the first two terms of (85): 

T = T(A,A;()) = PO(^(A,A;()) 

r, = fJiA,A'(-)) = -^iA,A',i-)) 

(87) 

(88) 

Except for the argument lists and the presence of 
functionals rather than functions only, (87)-(88) appear 
strikingly similar to Eq. (33)-(34) of the VNE formula- 
tion of Section 3.3.1. 

Eq. (39)i for the internal dissipation a is recalled, 
which defines the internal dissipation as the specific rate 
of production of entropy at zero temperature gradient 
[[15], Eq. (6.29)]: 

'—^ 
(89) 

S-ijr is independent of go- Setting VQO = 0 in (86) pro- 
duces the relation for the internal dissipation, to first 
order in the Frechet expansion, which holds indepen- 
dent of the value of Vo^ [4,15] in analogy to (39)2: 

a = -hir(A,A[i)\A[i))>0 (90) 

Note that a is independent of the present component 
A(t) of the history rate; A{t) is not associated with inter- 
nal entropy production. Another way to express defini- 
tion (89) is as follows. From (36), (89), (14), and the rate 
form of (18) follows 

-e-\ir + rj9 PQ-'T-E) (91) 

which is equivalent to Coleman [15], Eq. (8.1b)].^^ Eq. 
(87), (88) then produce the desired result: 

= -e-\ir-id^ir)-A) 

aE •E) 

(92) 

Thus T^a is the negative of the component of \j/ due to 
non-instantaneous (i.e. inelastic^^) response; i.e., it is the 
magnitude of the rate of inelastic dissipation of free 
energy. It is shown by Coleman [15, 90] that both suffi- 
ciently slow, and sufficiently fast, loading histories pro- 
duce elastic behavior; the slope of the response of the 
latter depends upon the previous history. As argued by 
Rivlin (e.g. [8,97]) the latter characteristic results from 
the response functionals (72), (79)-(83) behaving as 
ordinary functions at the present time. As the contribu- 
tion to the response functionals at time t is given by a 
simple function of the strain and temperature at t, it is 
instantaneous; it can also be instantaneously removed. 
Thus, a differential increment of this contribution is 
instantaneous. As such responses are identified with 
elasticity, the interpretation of (92) follows, with the 
elastic part^° of the free energy rate given by (9AiA) ■ A, 
the entire instantaneous contribution. It is observed that 

^* Coleman's result follows from noting from Eqs. (7), (9) that 
Po'f-E = p-'F-'T-F = p-'tr(F-'TF). 

^' The terminology is not meant to suggest that all elastic restora- 
tive forces are contained in the instantaneous response; they are not. A 
simple three-parameter solid, a spring in series with a unit consisting 
of another spring in parallel with a dashpot, is a counter-example. 
However, an agency applying load to a material behaving as a three- 
parameter solid can define the elastic part of the response only as that 
which occurs, and can be restored, instantaneously. 

^° It can be conversely noted that the difference occurring on the 
right side of Eq. (92) produces the internal entropy production, which 
is incompatible with elastic response. 

\^ 
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(90) is recovered from (92) with the chain rule (78) for 
•^, which assumes a first-order Frechet expansion.'' 

The elastic behavior for quasistatic processes results 
from the assumption of fading memory; if the present 
value of A = (E(0, &{t)) is held for sufficient duration, the 
response "depends only on that value. In the limit of infi- 
nitely slow processes, the effects of the past history vanish, 
i.e. the quasistatic and instantaneous responses coincide. 

The importance of the present time and its association 
with static continuations is reflected by a non-zero Borel 
'influence measure' at j = 0 ([4,99,100]; cf. [101]). 

The functionals employed above are already invariant 
to rigid rotations of the Eulerian frame, i.e. they are 
Eulerian objective. If it is desired to express the stress or 
heat flux with respect to the Eulerian/current config- 
uration, one need only employ the definitions (8) and (9) 
with (82) and (83), i.e. 

^(0 = v^(A(0, A;(-)) = knt), 0{t); a{t)), (95) 

5(0 = /-'F?o(A,A'(-),io) 

T(0 = /"'Ff(A,A'())F^ 

If the dependence on /= detF = [det(2E + I)] 

(93) 

(94) 

1/2   i^ 

incorporated into the functionals, (93)-(94) are equiva- 
lent to the forms indicated by e.g. [66,77], where the 
deformation variable employed was C instead of E. 

Linear viscoelasticity can be obtained by considering 
small strains and departures <p=d — do from the initital 
temperature. Strain and <p/do are infinitesimals of 0(e) 

with  £ = SUP|F(T) —1|,  where sup  denotes  the least 
r 

upper bound; only terms of 0{e) are retained in the 
constitutive relations. For example, the hereditary integral 
representation of \jf is limited_to second order in (dE, d^), 
p = A)[l + 0(e)] and E = i[VM + (VS)^] -|- 0{e^), where 
tt is the displacement vector [91]. 

Lustig et al. [98] reformulate the development of 
Coleman [15] based on 'material time,' which scales the 
response in such a way as to extend the viability of the 
expansion about the current state. The material time 
depends on the histories of the deformation and tem- 
perature. The free energy and internal dissipation are of 
second order in a Frechet expansion about the zero dif- 
ference history, in accordance with the final footnote of 
the previous discussion. 

5.3.2. Caratheodory basis for entropy and absolute 
temperature 

To introduce a VNE formulation, it is noted that the 
following relationship is ultimately desired: 

^' An expansion about the zero difference history (equilibrium) 
results in vanishing Sir ([15], Eqs. (8.22); Lustig et al. [98], Eqs. (3.5) 
and (3.13)), requiring a second-order expansion and corresponding 
second-order internal dissipation. 

where a{t) is a set of internal variables, which may be 
infinite in number. The function ^ implies here a VNE 
treatment (E measures total deformation) and thus 
entropy existence. Recalling A(0 - (E{t),d{t)), Eq. (95) 
immediately suggests the past history function as an 
internal variable (or it may be viewed as a continuum of 
internal variables, corresponding to variations of s at 
fixed 0; 

a{t) -^ a'Xs) = A%s) = A^? - s),  se (0, oo) (96) 

We recall that the deformation can be viewed as having 
two components: an elastic component which occurs 
instantaneously at the present time, and a dissipative 
component which involves the history of the past rates of 
the thermomechanical variables. A simple visualization 
device is a thermoelastic spring in series with a dis- 
sipative element having non-instantaneous response. 
For a polymeric material, the spring may be viewed as 
associated with an instantaneous component of polymer 
coil extension, while the dissipative element is associated 
with relative motions of polymer chains, viscosity, and 
restorative forces which are restrained by these influ- 
ences (e.g. a spring in parallel with a damper). 

Internal variables fitting the VNE prescription are 
held constant while a reversible increment (dE(0, 
d9(t)) = (E(0, ^(O)d^ is produced, which makes possible 
the application of Caratheodory's theorem. The rever- 
sible increment, which involves only quantities at the 
present time, does not affect the past history; i.e., quan- 
tities depending only on the past history are suitable 
internal variables for the Caratheodory framework. 

The VNE treatment is thus initiated by assuming 

u(0 = "(A(0,AK-)) = "(A(0;2r(-)) (97) 

where aj(j) is given by (96); the notation is employed as 
a reminder that a VNE internal variable treatment is 
being developed. 

It is clear that u is a functional, as the entire history is 
required, and the chain rule (78) applies to the func- 
tionals of the present treatment when their smoothness 
agree with those of Section 5.3.1. T.T refer below to 
the second Piola-Kirchhoff stress functionals in the two 
representations; dependence on empirical temperature i? 
is initially assumed. 

Eq. (29) for the reversible increment^^ (application of 
Caratheodory's theorem) becomes 

[poii(a-( ■)) - Wii •))•£] = Po9(ma'ri ■)) (98) 

^^ Note that because the functionals behave as functions at the 
present time, the same strategy appUes globally. 

\h 
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[9AW-09A^]-A=p^'f-E (99) 

where a time displacement dt may be imposed across both 
sides if desired to replicate the context of (29), a[{-) = 

a[{-) is  constant  during the increment,  and (99)  is 

equivalent to (98). Given the existence of entropy and 
absolute temperature from (98)-(99), the required 
smoothnesses are assumed for application of the chain 
rule (78); the free energy rate is then expanded from (18) 
as 

V^(A,aK-)) = [(9A")-A+5w(A,aK-)l£K-))] 

-0[(9A^)-A + 5^(A,aK-)l£r(-))] 

-0 (100) 

by applying the chain rule to u, fj. The definition of free 
energy (18) and the linearity of the Frechet differential 
[95,96] provide 

5ti(A,g;(.)l«;(-))-e5^(A,gK-)lgr(-)) 

= 5^(A,gJC)l«K-)) (101) 

Eqs. (99)-(101) produce, in analogy to (30): 

iA = Po'T-E-^0 + 5V^(A,gK-)l5r(-)). (102) 

Eqs. (33)-(34) for the stress and entropy are therefore 
recovered, providing then also from e.g. (91) or (92) that 
— 9~^STJr is the internal dissipation cr. From the defini- 

tion (89), non-negative y, and STJT independent of VQ9, 

follows cr^O. The VNE construction based on (96)-(97) 
thus provides the same results as the dissipation inequal- 
ity treatment of the previous section, while establishing 
the existence of entropy and absolute temperature. 

It is not the case that any practical internal variable 
model may be represented by a functional model meeting 
the previous description, or vice-versa. Rate-independent" 
plasticity models, for example, may be written to yield 
a(E, 9, a, E, 9) for the evolution of the internal variables, 
i.e. the entire histories of the controllable variables 
appear (referring to (1) without g-dependence), with 
their present rates, which therefore enter the internal 
dissipation (39). Common viscoplasticity models give 
a(E,0, a), i.e. neither the present or past controllable 
rates are explicitly^^ required and are therefore absent 
from the internal dissipation. It is nevertheless the case 
that behaviors of functional models may be mimicked 

'' Explicit knowledge of the histories of the controllable variables, 
as indicated by Eq. (1), provides also the rates at which the paths were 
traversed. 

by the described common internal variable models, and 
vice-versa, under practical and restricted circumstances. 

Rivlin [8,97] considers application of a Caratheodory- 
based method to materials with memory. Processes 
considered are limited to those which begin and end in 
states of thermomechanical equilibrium, as in Day [29]. 
Entropy is defined as the state function, associated with 
a quasistatically thermoelastic body, derived from Car- 
atheodory's theorem for reversible (quasistatic) pro- 
cesses. The same function of state is employed to assign 
values to the entropy at the equilibrium start and end 
states of such a body. Entropy at an instant during an 
irreversible process is considered undefined. By con- 
sidering a system containing reservoirs transmitting and 
receiving heat reversibly to and from the body, a Clau- 
sius-Plank inequality [a time-integrated analogue of 
(15)] is deduced. Additional arguments involving 
approximate and physical motivations are presented. 

5.4.  Composite materials 

Deformations of composite materials may be modeled 
in various ways as arising from the contributions of 
constituent materials behaving in accordance with the 
previously developed principles of thermomechanics. 
Further details are beyond the scope of the present 
study. Many outstanding authors contribute to the 
modeling of thermoelastic and thermoinelastic beha- 
viors in composites; two sources will be mentioned in 
particular due to their strong relationships to previous 
developments. Tiersten and Jahanmir [102] apply the 
BW [47] thermodynamics to a finitely deformable, heat 
conducting composite modeled as a mixture of A'^ inter- 
penetrating phases with viscous dissipation; wave pro- 
pagation is the motivation. Valanis [103] applies the 
VNE approach to anisotropic, inelastic, heat conduct- 
ing materials with a material time measure, for small 
strains and temperature changes; a mechanical mixture 
theory is developed for the stiffness of an elastoplastic 
matrix, elastic fiber composite. 

It is the author's pleasure to note on this occasion the 
volumes, Reddy JN., editor. Mechanics of Composite 
Materials; Selected Works of Nicholas J. Pagano [104], 
and Pagano NJ, editor, Interlaminar Response of Com- 
posite Materials [105], which survey often-cited, funda- 
mental and lasting contributions to the understanding of 
the thermomechanical behaviors of composite materials. 

6. Conclusion 

Constitutive model formulation depends on the 
availabilities of entropy, internal energy and associated 
potentials. An attempt has been made here to summar- 
ize some of the key contributions to the literature. The 
Caratheodory constructions provided in this work offer 

\\S 
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another means to justify the existence of entropy for the 
specified classes of models, subject to the assumptions 
detailed in Section 3.3. Favorable aspects of these 
methods include: the absence of cyclic processes, bounded 
operators or presumed accessibilities in the statement of 
the second law (the Caratheodory statements rest 
instead on inaccessibility under adiabatic conditions); 
global and local statements of the second law are naturally 
related; entropy production is not required to vanish at 
the quasistatic limit; thermoelastic, thermoplastic and 
thermoviscoelastic phenomena are all admitted. 

It is experiments which ultimately justify the methods 
described. There are a wide range of thermodynamic 
models, in fields such as thermoelasticity, thermoplasticity, 
thermoviscoelasticity, phase changing materials, thermo- 
electromagnetoelastic materials, shock waves, bioma- 
terials, composite materials, etc., at infinitesimal and 
finite strains, for static and dynamic motions, which 
employ potentials and kinematics based on principles 
discussed here. Although there is much work to be done 
to attain the ultimate level of understanding, much 
work exists which points to the acceptability of the 
underlying assumptions for engineering applications. 

More complicated subjects incorporating additional 
coupled phenomena have not been addressed here, e.g. 
multi-component mixtures with processes of diffusion 
and chemical reactions; substantiating the associated 
models is obviously more difficult. Yet, growing con- 
fidence in approaches for simpler systems obviously 
extends in part to more complex systems which include 
the simpler systems as components. 

Ackno wled gements 

The author is indebted to D.R. Owen and H.F. Tier- 
sten, as well as M.E. Oxley, N.J. Pagano and D.C. 
Lagoudas, for invaluable discussions of parts of the 
manuscript. Any faults of the manuscript are, of course, 
attributable to the author alone. 

References 

[1] Casey J. On elastic-thermo-plastic materials at finite deforma- 
tions. Int J Plast 1998;14:173-91. 

[2] Serrin J. On the elementary thermodynamics of quasi-static 
systems and other remarks. In; Brock LM, editor. Thermoelastic 
problems and the thermodynamics of continua (AMD-Vol. 
198). New York: ASME, 1995. p. 53-63. 

[3] Oden JT, de Arantes e Oliveira ER. Lectures on finite element 
methods in continuum mechanics. University of Alabama in 
Huntsville, 1973. 

[4] Coleman BD, Mizel VJ. A general theory of dissipation in 
materials with memory. Arch Rat Mech Anal 1967;27:255-74. 

[5] Nemat-Nasser S. On nonequilibrium thermodynamics of visco- 
elasticity and viscoplasticity.  In: Delgado Domingos et al., 

editors.   Foundations   of continuum   thermodynamics.   New 
York: John Wiley. 

[6] Nemat-Nasser S. On nonequilibrium thermodynamics of con- 
tinua. In: Nemat-Nasser S. editor. Mechanics today, vol. 2. New 
York: Pergamon, 1975. 

[7] Nemat-Nasser S. On nonequilibrium thermodynamics of con- 
tinua: addedum. In: Nemat-Nasser S. editor. Mechanics today, 
vol. 4, New York: Pergamon, 1978. 

[8] Rivlin  RS.  The  thermomechanics  of materials with fading 
memory. In: Hutton JF et al., editor. Theoretical rheology. p. 
83-103.  (In:  Barenblatt GI, Joseph  DD.  editors.  Collected 
works of R. S. RivUn; vol. II. Springer, 1997. p. 1559-79). 

[9] Malvem LE. Introduction to the mechanics of a continuous 
medium. Englewood Cliffs (NJ): Prentice-Hall, 1969. 

[10] Serrin J. An outline of thermodynamical structure. In: Serrin J, 
editor. New perspectives in thermodynamics. New York: 
Springer, 1986. p. 3-32. 

[11] Coleman BD, Owen DR. A mathematical foundation for ther- 
modynamics. Arch Rat Mech Anal 1974;54:1-104. 

[12] Truesdell C, Noll W. The non-linear field theories of mechanics. 
In: Flugge S, editor. Encyclopedia of physics, vol. III/3. New 
York: Springer-Verlag, 1965. 

[13] Silhavy M. The mechanics and thermodynamics of continuous 
media. Berlin, New York: Springer-Verlag, 1997. 

[14] Coleman BD, Noll W. The thermodynamics of elastic materials 
with heat conduction and viscosity. Arch Rat Mech Anal 
1963;13:167-78. 

[15] Coleman BD. Thermodynamics of materials with memory. Arch 
Rational Mech Anal 1964;I7:I^6. 

[16] Truesdell C. Rational thermodynamics. New York: Springer- 
Verlag, 1984. 

[17] Lemaitre J, Chaboche J-L. Mechanics of solid materials. New 
York: Cambridge UP, 1990. 

[18] Man C-S. Thermodynamics based on a work inequality. Arch 
Rat Mech Anal 1989;106:1-61. 

[19] Man C-S. Remarks on the global and local versions of the sec- 
ond law of thermomechanics. In: Brock LM, editor. Thermo- 
elastic problems and the thermodynamics of continua (AMD- 
Vol. 198). New York: ASME, 1995. p. 33-9. 

[20] Valanis KC. Irreversibility and existence of entropy. Int J Non- 
Linear Mechanics 1971;6:337-60. 

[21] Hall RB, Thermodynamics and viscoplasticity with plastic spin. 
In: Picu RC, KrempI E, editors. Proc. 4th Intl. Conf. On 
Constitutive Laws for Eng. Materials, Troy (NY), 27-30 July 
1999. p. 168-71, 

[22] Truesdell C, Toupin RA. The classical field theories. In: Flugge 
S, editor. Encyclopedia of physics, vol. 1X1/1. New York: 
Springer-Verlag, 1960. 

[23] Serrin J, editor. New Perspectives in thermodynamics. New 
York: Springer, 1986. 

[24] Owen DR. A first course in the mathematical foundations of 
thermodynamics. New York: Springer-Verlag, 1984. 

[25] Hutter K. The foundations of thermodynamics, its basic postu- 
lates and implications. A review of modem thermodynamics. 
Acta Mech 1977;27:1-54. 

[26] Bataille J, Kestin J. Irreversible processes and physical inter- 
pretation of rational thermodynamics. J Non-Equilib Thermo- 
dyn 1979;4:229-58. 

[27] Kestin J. Local-equilibrium formalism applied to mechanics of 
solids. Int J Solids Structures 1992;29:1827-36. 

[28] Day WA. A theory of thermodynamics for materials with 
memory. Arch Rat Mech Anal 1969;34:85-96. 

[29] Day WA. The thermodynamics of simple materials with fading 
memory, Springer tracts in natural philosophy, vol. 22. New 
York: Springer, 1972. 

[30] Wilmanski, K. Phenomenological thermodynamics. In: Zorski 
H, editor. Foundations of mechanics. New York: Elsevier, 1992. 

\\ 



2598 R.B. Hall I Composites Science and Technology 60 (2000) 2581-2599 

[31] Noll W. A new mathematical theory of simple materials. Arch 
Rat Mech Anal 1972;48:1-50. 

[32] Coleman BD, Owen DR. On thermodynamics and elastic- 
plastic materials. Arch Rat Mech Anal 1975;59:25-51. 

[33] Coleman BD, Owen DR. Recent research on the foundations of 
thermodynamics. In; Serrin J, editor. New perspectives in ther- 
modynamics. New York: Springer, 1986. p. 65-77 (also appears 
as Appendix Gl in [16]). 

[34] Coleman BD, Owen DR. On the thermodynamics of semi-sys- 
tems with restrictions on the accessibility of states. Arch Rat 
Mech Anal 1977;66:173-81. 

[35] Coleman BD, Owen DR. On the thermodynamics of elastic- 
plastic materials with temperature-dependent moduli and yield 
stresses. Arch Rat Mech Anal 1979;70:340-54. 

[36] Lucchesi M, Silhavy M. Thermoplastic materials with combined 
hardening. Int J Plast 1993;9:291-315. 

[37] Reed KW, Atluri S. Constitutive modelling and computational 
implementation for finite strain plasticity. Int J Plast 1985;1:63. 

[38] Serrin J. Conceptual analysis of the classical second law of 
thermodynamics. Arch Rat Mech Anal 1979;70:355-71. 

[39] Silhavy M. On measures, convex cones, and foundations of 
thermodynamics i. Systems with Vector-Valued Actions, Czech 
J Physics B i980;30:841-61. 

[40] Silhavy M. On measures, convex cones, and foundations of 
thermodynamics ii. Thermodynamic Systems, Czech J Physics B 
1980;30:961-91. 

[41] Coleman BD, Owen DR, Serrin J. The second law of thermo- 
dynamics for systems with approximate cycles. Arch Rat Mech 
Anal 1981;77:103^2. 

[42] Owen DR. Global and local versions of the second law of ther- 
modynamics. In: Lawvere FW, Schanuel SH, editors. Categories 
in continuum physics. Berlin: Springer, 1986. p. 100-14. 

[43] Owen DR. Private communication. 
[44] Truesdell C. The efficiency of a homogeneous heat engine. J 

Math Phys Sci (Madras) 1973;7:349-71. 
[45] Truesdell C. The efficiency of a homogeneous heat engine. J 

Math Phys Sci (Madras) 1975;9:193^. 
[46] Truesdell C. A third line of argument in thermodynamics. In: 

Serrin J, editor. New perspectives in thermodynamics. New 
York: Springer-Veriag, 1986. p. 79-83. 

[47] Boley BA, Weiner JH. Theory of thermal stresses. New York: 
John Wiley, 1960. 

[48] Chaboche JL. Thermodynamic and phenomenological descrip- 
tion of cyclic viscoplasticity with damage. Eur. Space Agency 
Tech. Translation Service publ. ESA-TT-548, translation of 
ONERA publ. 1978-3, 1979. 

[49] Adkins CJ. EquiHbrium thermodynamics. New York: Cam- 
bridge Univ. Press, 1983. 

[50] Dutta M, Dutta T. Axiomatization of thermodynamics. In: 
Rassias ThM, editor. Constantin Caratheodory: an inter- 
national tribute. Teaneck (NJ): World Scientific Publ. Co, 1991. 
p. 219-28. 

[51] Bailyn M. A survey of thermodynamics. New York: AIP Press, 
1994. 

[52] Coleman BD, Gurtin ME. Thermodynamics with internal state 
variables. J Chem Phys 1967;47:597-613. 

[53] Wilson AH. Thermodynamics and statistical mechanics. Cam- 
bridge (UK): Cambridge UP, 1966. 

[54] Bernstein B. Proof of Caratheodory's local theorem and its 
global application to thermostatics. J Math Phys 1960; 1 (3):222^. 

[55] Truesdell C. What did Gibbs and Caratheodory leave us about 
thermodynamics?. In: Serrin J, editor. New perspectives in ther- 
modynamics. New York; Springer-Veriag, 1986. p. 101-24. 

[56] Buchdahl HA. The concepts of classical thermodynamics. New 
York: Cambridge UP, 1966. 

[57] Edelen DOB. A thermodynamics with internal degrees of free- 
dom and nonconservative forces. Int J Engng Sci 1976;14:1013-32. 

[58] Pippard AB. Elements of classical thermodynamics. New York: 
Cambridge UP, 1964. 

[59] Gurtin ME, Williams WO, Ziemer WP. Geometric measure 
theory and  the  axioms  of continuum  thermodynamics.  In: 
Coleman BD,  Feinberg M, Serrin J,  editors.  Analysis and 
Thermomechanics. New York: Springer-Verlag, 1987. p. 379- 
400. 

[60] Hall, R. B., in preparation. 
[61] Lee EH, Liu DT. Finite-strain elastic-plastic theory with appli- 

cation to plane-wave analysis. J Appl Phys 1967;38:19-27. 
[62] Germain P, Lee EH. On shock waves in elastic-plastic solids. J 

Mech Phys Solids 1973;21:359-82. 
[63] Ogden RW. Non-linear elastic deformations. New York: Wiley, 

1984. 
[64] Dafalias YF. Plastic spin: necessity or redundancy? Int J Plasti- 

city 1998;14:909-31. 
[65] Dafalias YF.  The plastic spin. J. Appl. Mech. 1985;52:865-71 

(errata J. Appl. Mech. 53, 1986, 290). 
[66] Rivlin RS. Objectivity of the constitutive equation for a material 

with memory. Int J Solids Structures 1991;27:395-7. 
[67] Lee EH, Mallett RL, Wertheimer TB. Stress analysis for aniso- 

tropic hardening in finite-deformation plasticity. J Appl Mech 
1983;50:554-60. 

[68] Dafalias YF. The plastic spin in viscoplasticity. Int J Solids 
Structures 1990;26:149-63. 

[69] Aravas N, Aifantis EC. On the geometry of slip and spin in 
finite plastic deformation. Int J Plast 1991;7:141-60. 

[70] Cho HW, Dafalias YF. Distortional and orientational hardening 
at large viscoplastic distortions. Int J Plast, 12 (7):903-25 

[71] Xiao, H., Bruhns, O. T. and Meyers, A. On Objective Corota- 
tional rates and Their Defining Spin Tensors, Int. J. Solids 
Structures, 1998;35(31):400l-14. 

[72] Xiao H, Bruhns OT, Meyers A. Logarithmic strain, logarithmic 
spin and logarithmic rate. Acta Mech 1997;124:89-105. 

[73] Toupin RA. The elastic dielectric. J Rational Mech Analysis 
1956;5(6):849-915. 

[74] Simo JC, Pister KS. Remarks on rate constitutive equations for 
finite deformation problems: computational implications. Comp 
Meth Appl Mech Eng 1984;46:201-15. 

[75] Olsen ET, Bernstein  B.  A class of hypo-elastic non-elastic 
materials and their thermodynamics. In: Dafermos CM, Joseph 
DD, Leslie FM, editors. The Breadth and Depth of Continuum 
Mechanics. New York: Springer, 1986. p. 519-31. 

[76] Pereda JJ, Aravas N, Bassani JL. Finite deformations of aniso- 
tropic polymers. Mech Mater 1993;15:3-20. 

[77] Rivlin RS. (1992) Frame indifference. Rend. Mat. Accad Lincei 
3; 51-9. (in: Barenblatt GI, Joseph DD, editors.. Collected 
works of R. S. Rivlin, vol. II. Springer, p. 1713-21). 

[78] Krausz AS, Krausz K, editors. Unified constitutive laws of 
plastic deformation. New York: Academic Press, 1996. 

[79] Walker KP, Research and development program for nonlinear 
structural modeling with advanced time-temperature dependent 
constitutive relationships. NASA CR-165533, 1981. 

[80] Lindholm US, Chan KS, Bodner SR, Weber RM, Walker KP, 
Cassenti  BN.  Constitutive modeling for isotropic materials 
(HOST). NASA CR-174718, 1984. 

[81] Krempl E. Models of viscoplasticity. Some Comments on Equi- 
librium (Back) Stress and Drag Stress, Acta Mech, 69:25^2 

[82] Valanis, K.C. (1971a,b), A Theory of Viscoplasticity Without a 
Yield Surface, Part I — General Theory; Part II — Application 
to the Mechanical Behavior of Metals, Archives of Mechanics 
23, 517-33 and 535-51. 

[83] Valanis KC. Back stress and Jaumann rates in finite plasticity. 
Int J Plast 1990;6:353-67. 

[84] Biot  MA.  Theory  of stress-strain   relations   in   anisotropic 
viseoelasticity   and   relaxation   phenomena.   J    Appl   Phys 
1954;25:1385-91. 

X"^ 



R.B. Hall / Composites Science and Technology 60 (2000) 2581-2599 2599 

[85] Biot MA. Thermoelasticity and irreversible thermodynamics. J 
ApplPhys 1956;27:240-53. 

[86] Fung YC. Foundations of solid mechanics. Englewood Cliffs 
(NJ): Prentice-Hall, 1965. 

[87] Schapery RA. Application of thermodynamics to thermo- 
mechanical, fracture, and birefringent phenomena in viscoelastic 
media. J Appl Phys 1964;35:1451-65. 

[88] Schapery RA. On the characterization of nonlinear viscoelastic 
materials. Polymer Eng Sci 1969;9:295-310. 

[89] Valanis KC. Thermodynamics of large viscoelastic deforma- 
tions. J Math and Phys 1966;45:197-212. 

[90] Coleman BD. On thermodynamics, strain impulses, and visco- 
elasticity. Arch Rational Mech Anal 1964;17:230-54. 

[91] Christensen RM. Theory of viscoelastidty. New York: Aca- 
demic Press, 1982. 

[92] Gurtin ME, Hrusa WJ. On the thermodynamics of viscoelastic 
materials of single-integral type. Quart Appl Math 1991;49:67-85. 

[93] Coleman BD, Noll W. Foundations of linear viscoelasticity. Rev 
Modem Phys 1961;33:239-49. 

[94] Mizel VJ, Wang C-C. A fading memory hypothesis which suf- 
fices for chain rules. Arch Rat Mech Anal 1966;23:124-34. 

[95] Zeidler E. Nonlinear functional analysis and its applications i: 
fixed-point theorems. New York: Springer-Verlag, 1986. 

[96] Debnath L, Mikusinski P. Introduction to Hilbert spaces with 
applications. New York: Academic Press, 1990. 

[97] Rivlin RS. Reflections on certain aspects of thermomechanics. 
In: Grioli G, editor. Finite thermoelasticity, contributi del cen- 
tro interdisciphnare di scienze matematiche e loro applicazione 
no. 76, Rome: Accademia Nazionale dei Lincei, 11-44 (in 
Barenblatt GI, Joseph DD, editors., Collected works of R. S. 
Rivlin, vol. I, Springer, 1997, p. 430-63). 

[98] Lustig SR, Shay RM, Caruthers JM. Thermodynamic con- 

stitutive equations for materials with memory on a material time 
scale. J Rheol 1996;40:69-106. 

[99] Coleman BD, Mizel VJ. Norms and semi-groups in the theory 
of fading memory. Arch Rat Mech Anal 1966;23:87-123. 

[100] Coleman BD, Mizel VJ. On the general theory of fading mem- 
ory. Arch Rat Mech Anal 1968;29:18-31. 

[101] Williamson JH. Lebesgue integration. New York: Holt, Rein- 
hart and Winston, 1962. 

[102] Tiersten HF, Jahanmir M. A theory of composites modeled 
as interpenetrating solid continua. Arch Rat Mech Anal 
1977;65:153-92. 

[103] Valanis KC. Thermomechanical behavior of anisotropic inelas- 
tic composites: a micromechanical theory. J Eng Mat Tech 
1991;113:141-7. 

[104] Reddy JN, editor. Mechanics of composite materials; selected 
works of Nicholas J. Pagano. Boston: Kluwer Academic, 1989. 

[105] Pagano NJ, editor. Interlaminar response of composite materi- 
als. New York: Elsevier, 1989. 

[106] Nemat-Nasser S. On nonlinear thermoelasticity and non- 
equilibrium thermodynamics. Dickey RW, ed., Nonlinear 
Elasticity, New York: Academic Press, 1973, p. 289-338. 

[107] Lee EH. The use of plastic strain as a state variable. Sawczuk A, 
Bianchi G, editors. Plasticity Today: Modelling, Methods and 
Applications, New York: Elsevier, 1985, p. 175-7. 

[108] MuUer I, Ruggeri T. Rational extended thermodynaics (2nd 
ed.). New York, Springer, 1998. 

[109] Jou D, Casas-Vazquez J, Lebon G, Extended irreversible 
thermodynamics (2nd ed.). New York, Springer, 1996. 

[110] Eu BC. Kinetic theory and irreversible thermodynamics. New 
York, Wiley, 1992. 

[Ill] Shilov GE, Gurevich BL. Integral, Measure and Derivative: A 
Unified Approach. Englewood Cliffs (NJ): Prentice Hall, 1966. 

X^ 


